torch_geometric.transforms¶
-
class
Compose
(transforms)[source]¶ Composes several transforms together.
- Parameters
transforms (list of
transform
objects) – List of transforms to compose.
-
class
Distance
(norm=True, max_value=None, cat=True)[source]¶ Saves the Euclidean distance of linked nodes in its edge attributes.
- Parameters
norm (bool, optional) – If set to
False
, the output will not be normalized to the interval \([0, 1]\). (default:True
)max_value (float, optional) – If set and
norm=True
, normalization will be performed based on this value instead of the maximum value found in the data. (default:None
)cat (bool, optional) – If set to
False
, all existing edge attributes will be replaced. (default:True
)
-
class
Cartesian
(norm=True, max_value=None, cat=True)[source]¶ Saves the relative Cartesian coordinates of linked nodes in its edge attributes.
- Parameters
norm (bool, optional) – If set to
False
, the output will not be normalized to the interval \({[0, 1]}^D\). (default:True
)max_value (float, optional) – If set and
norm=True
, normalization will be performed based on this value instead of the maximum value found in the data. (default:None
)cat (bool, optional) – If set to
False
, all existing edge attributes will be replaced. (default:True
)
-
class
LocalCartesian
(cat=True)[source]¶ Saves the relative Cartesian coordinates of linked nodes in its edge attributes. Each coordinate gets neighborhood-normalized to the interval \({[0, 1]}^D\).
-
class
Polar
(norm=True, max_value=None, cat=True)[source]¶ Saves the polar coordinates of linked nodes in its edge attributes.
- Parameters
norm (bool, optional) – If set to
False
, the output will not be normalized to the interval \({[0, 1]}^2\). (default:True
)max_value (float, optional) – If set and
norm=True
, normalization will be performed based on this value instead of the maximum value found in the data. (default:None
)cat (bool, optional) – If set to
False
, all existing edge attributes will be replaced. (default:True
)
-
class
Spherical
(norm=True, max_value=None, cat=True)[source]¶ Saves the spherical coordinates of linked nodes in its edge attributes.
- Parameters
norm (bool, optional) – If set to
False
, the output will not be normalized to the interval \({[0, 1]}^3\). (default:True
)max_value (float, optional) – If set and
norm=True
, normalization will be performed based on this value instead of the maximum value found in the data. (default:None
)cat (bool, optional) – If set to
False
, all existing edge attributes will be replaced. (default:True
)
-
class
PointPairFeatures
(cat=True)[source]¶ Computes the rotation-invariant Point Pair Features
\[\left( \| \mathbf{d_{j,i}} \|, \angle(\mathbf{n}_i, \mathbf{d_{j,i}}), \angle(\mathbf{n}_j, \mathbf{d_{j,i}}), \angle(\mathbf{n}_i, \mathbf{n}_j) \right)\]of linked nodes in its edge attributes, where \(\mathbf{d}_{j,i}\) denotes the difference vector between, and \(\mathbf{n}_i\) and \(\mathbf{n}_j\) denote the surface normals of node \(i\) and \(j\) respectively.
-
class
OneHotDegree
(max_degree, in_degree=False, cat=True)[source]¶ Adds the node degree as one hot encodings to the node features.
-
class
TargetIndegree
(norm=True, max_value=None, cat=True)[source]¶ Saves the globally normalized degree of target nodes
\[\mathbf{u}(i,j) = \frac{\deg(j)}{\max_{v \in \mathcal{V}} \deg(v)}\]in its edge attributes.
-
class
LocalDegreeProfile
[source]¶ Appends the Local Degree Profile (LDP) from the “A Simple yet Effective Baseline for Non-attribute Graph Classification” paper
\[\mathbf{x}_i = \mathbf{x}_i \, \Vert \, (\deg(i), \min(DN(i)), \max(DN(i)), \textrm{mean}(DN(i)), \textrm{std}(DN(i)))\]to the node features, where \(DN(i) = \{ \deg(j) \mid j \in \mathcal{N}(i) \}\).
-
class
NormalizeRotation
(max_points=-1)[source]¶ Rotates all points so that the eigenvectors overlie the axes of the Cartesian coordinate system. If the data additionally holds normals saved in
data.norm
these will be also rotated.- Parameters
max_points (int, optional) – If set to a value greater than
0
, only a random number ofmax_points
points are sampled and used to compute eigenvectors. (default:-1
)
-
class
RandomTranslate
(translate)[source]¶ Translates node positions by randomly sampled translation values within a given interval. In contrast to other random transformations, translation is applied separately at each position.
-
class
RandomFlip
(axis, p=0.5)[source]¶ Flips node positions along a given axis randomly with a given probability.
-
class
LinearTransformation
(matrix)[source]¶ Transforms node positions with a square transformation matrix computed offline.
- Parameters
matrix (Tensor) – tensor with shape \([D, D]\) where \(D\) corresponds to the dimensionality of node positions.
-
class
RandomScale
(scales)[source]¶ Scales node positions by a randomly sampled factor \(s\) within a given interval, e.g., resulting in the transformation matrix
\[\begin{split}\begin{bmatrix} s & 0 & 0 \\ 0 & s & 0 \\ 0 & 0 & s \\ \end{bmatrix}\end{split}\]for three-dimensional positions.
- Parameters
scales (tuple) – scaling factor interval, e.g.
(a, b)
, then scale is randomly sampled from the range \(a \leq \mathrm{scale} \leq b\).
-
class
RandomRotate
(degrees, axis=0)[source]¶ Rotates node positions around a specific axis by a randomly sampled factor within a given interval.
-
class
RandomShear
(shear)[source]¶ Shears node positions by randomly sampled factors \(s\) within a given interval, e.g., resulting in the transformation matrix
\[\begin{split}\begin{bmatrix} 1 & s_{xy} & s_{xz} \\ s_{yx} & 1 & s_{yz} \\ s_{zx} & z_{zy} & 1 \\ \end{bmatrix}\end{split}\]for three-dimensional positions.
-
class
KNNGraph
(k=6, loop=False, force_undirected=False, flow='source_to_target')[source]¶ Creates a k-NN graph based on node positions
pos
.- Parameters
k (int, optional) – The number of neighbors. (default:
6
)loop (bool, optional) – If
True
, the graph will contain self-loops. (default:False
)force_undirected (bool, optional) – If set to
True
, new edges will be undirected. (default:False
)flow (string, optional) – The flow direction when using in combination with message passing (
"source_to_target"
or"target_to_source"
). (default:"source_to_target"
)
-
class
RadiusGraph
(r, loop=False, max_num_neighbors=32, flow='source_to_target')[source]¶ Creates edges based on node positions
pos
to all points within a given distance.- Parameters
r (float) – The distance.
loop (bool, optional) – If
True
, the graph will contain self-loops. (default:False
)max_num_neighbors (int, optional) – The maximum number of neighbors to return for each element in
y
. This flag is only needed for CUDA tensors. (default:32
)flow (string, optional) – The flow direction when using in combination with message passing (
"source_to_target"
or"target_to_source"
). (default:"source_to_target"
)
-
class
FaceToEdge
(remove_faces=True)[source]¶ Converts mesh faces
[3, num_faces]
to edge indices[2, num_edges]
.
-
class
SamplePoints
(num, remove_faces=True, include_normals=False)[source]¶ Uniformly samples
num
points on the mesh faces according to their face area.
-
class
FixedPoints
(num, replace=True)[source]¶ Samples a fixed number of
num
points and features from a point cloud.
-
class
ToDense
(num_nodes=None)[source]¶ Converts a sparse adjacency matrix to a dense adjacency matrix with shape
[num_nodes, num_nodes, *]
.
-
class
LineGraph
(force_directed=False)[source]¶ Converts a graph to its corresponding line-graph:
\[ \begin{align}\begin{aligned}L(\mathcal{G}) &= (\mathcal{V}^{\prime}, \mathcal{E}^{\prime})\\\mathcal{V}^{\prime} &= \mathcal{E}\\\mathcal{E}^{\prime} &= \{ (e_1, e_2) : e_1 \cap e_2 \neq \emptyset \}\end{aligned}\end{align} \]Line-graph node indices are equal to indices in the original graph’s coalesced
edge_index
. For undirected graphs, the maximum line-graph node index is(data.edge_index.size(1) // 2) - 1
.New node features are given by old edge attributes. For undirected graphs, edge attributes for reciprocal edges
(row, col)
and(col, row)
get summed together.
-
class
LaplacianLambdaMax
(normalization=None, is_undirected=False)[source]¶ Computes the highest eigenvalue of the graph Laplacian given by
torch_geometric.utils.get_laplacian()
.- Parameters
normalization (str, optional) –
The normalization scheme for the graph Laplacian (default:
None
):1.
None
: No normalization \(\mathbf{L} = \mathbf{D} - \mathbf{A}\)2.
"sym"
: Symmetric normalization \(\mathbf{L} = \mathbf{I} - \mathbf{D}^{-1/2} \mathbf{A} \mathbf{D}^{-1/2}\)3.
"rw"
: Random-walk normalization \(\mathbf{L} = \mathbf{I} - \mathbf{D}^{-1} \mathbf{A}\)is_undirected (bool, optional) – If set to
True
, this transform expects undirected graphs as input, and can hence speed up the computation of the largest eigenvalue. (default:False
)
-
class
GenerateMeshNormals
[source]¶ Generate normal vectors for each mesh node based on neighboring faces.
-
class
ToSLIC
(add_seg=False, add_img=False, **kwargs)[source]¶ Converts an image to a superpixel representation using the
skimage.segmentation.slic()
algorithm, resulting in atorch_geometric.data.Data
object holding the centroids of superpixels inpos
and their mean color inx
.This transform can be used with any
torchvision
dataset.Example:
from torchvision.datasets import MNIST import torchvision.transforms as T from torch_geometric.transforms import ToSLIC transform = T.Compose([T.ToTensor(), ToSLIC(n_segments=75)]) dataset = MNIST('/tmp/MNIST', download=True, transform=transform)
- Parameters
add_seg (bool, optional) – If set to True, will add the segmentation result to the data object. (default:
False
)add_img (bool, optional) – If set to True, will add the input image to the data object. (default:
False
)**kwargs (optional) – Arguments to adjust the output of the SLIC algorithm. See the SLIC documentation for an overview.
-
class
GDC
(self_loop_weight=1, normalization_in='sym', normalization_out='col', diffusion_kwargs={'alpha': 0.15, 'method': 'ppr'}, sparsification_kwargs={'avg_degree': 64, 'method': 'threshold'}, exact=True)[source]¶ Processes the graph via Graph Diffusion Convolution (GDC) from the “Diffusion Improves Graph Learning” paper.
Note
The paper offers additional advice on how to choose the hyperparameters. For an example of using GCN with GDC, see examples/gcn.py.
- Parameters
self_loop_weight (float, optional) – Weight of the added self-loop. Set to
None
to add no self-loops. (default:1
)normalization_in (str, optional) – Normalization of the transition matrix on the original (input) graph. Possible values:
"sym"
,"col"
, and"row"
. SeeGDC.transition_matrix()
for details. (default:"sym"
)normalization_out (str, optional) – Normalization of the transition matrix on the transformed GDC (output) graph. Possible values:
"sym"
,"col"
,"row"
, andNone
. SeeGDC.transition_matrix()
for details. (default:"col"
)diffusion_kwargs (dict, optional) – Dictionary containing the parameters for diffusion. method specifies the diffusion method (
"ppr"
,"heat"
or"coeff"
). Each diffusion method requires different additional parameters. SeeGDC.diffusion_matrix_exact()
orGDC.diffusion_matrix_approx()
for details. (default:dict(method='ppr', alpha=0.15)
)sparsification_kwargs (dict, optional) – Dictionary containing the parameters for sparsification. method specifies the sparsification method (
"threshold"
or"topk"
). Each sparsification method requires different additional parameters. SeeGDC.sparsify_dense()
for details. (default:dict(method='threshold', avg_degree=64)
)exact (bool, optional) – Whether to exactly calculate the diffusion matrix. Note that the exact variants are not scalable. They densify the adjacency matrix and calculate either its inverse or its matrix exponential. However, the approximate variants do not support edge weights and currently only personalized PageRank and sparsification by threshold are implemented as fast, approximate versions. (default:
True
)
- Return type
-
diffusion_matrix_approx
(edge_index, edge_weight, num_nodes, normalization, method, **kwargs)[source]¶ Calculate the approximate, sparse diffusion on a given sparse graph.
- Parameters
edge_index (LongTensor) – The edge indices.
edge_weight (Tensor) – One-dimensional edge weights.
num_nodes (int) – Number of nodes.
normalization (str) – Transition matrix normalization scheme (
"sym"
,"row"
, or"col"
). SeeGDC.transition_matrix()
for details.method (str) –
Diffusion method:
"ppr"
: Use personalized PageRank as diffusion. Additionally expects the parameters:alpha (float) - Return probability in PPR. Commonly lies in
[0.05, 0.2]
.eps (float) - Threshold for PPR calculation stopping criterion (
edge_weight >= eps * out_degree
). Recommended default:1e-4
.
- Return type
(
LongTensor
,Tensor
)
-
diffusion_matrix_exact
(edge_index, edge_weight, num_nodes, method, **kwargs)[source]¶ Calculate the (dense) diffusion on a given sparse graph. Note that these exact variants are not scalable. They densify the adjacency matrix and calculate either its inverse or its matrix exponential.
- Parameters
edge_index (LongTensor) – The edge indices.
edge_weight (Tensor) – One-dimensional edge weights.
num_nodes (int) – Number of nodes.
method (str) –
Diffusion method:
"ppr"
: Use personalized PageRank as diffusion. Additionally expects the parameter:alpha (float) - Return probability in PPR. Commonly lies in
[0.05, 0.2]
.
"heat"
: Use heat kernel diffusion. Additionally expects the parameter:t (float) - Time of diffusion. Commonly lies in
[2, 10]
.
"coeff"
: Freely choose diffusion coefficients. Additionally expects the parameter:coeffs (List[float]) - List of coefficients
theta_k
for each power of the transition matrix (starting at0
).
- Return type
(
Tensor
)
-
sparsify_dense
(matrix, method, **kwargs)[source]¶ Sparsifies the given dense matrix.
- Parameters
matrix (Tensor) – Matrix to sparsify.
num_nodes (int) – Number of nodes.
method (str) –
Method of sparsification. Options:
"threshold"
: Remove all edges with weights smaller thaneps
. Additionally expects one of these parameters:eps (float) - Threshold to bound edges at.
avg_degree (int) - If
eps
is not given, it can optionally be calculated by calculating theeps
required to achieve a givenavg_degree
.
"topk"
: Keep edges with topk
edge weights per node (column). Additionally expects the following parameters:k (int) - Specifies the number of edges to keep.
dim (int) - The axis along which to take the top
k
.
- Return type
(
LongTensor
,Tensor
)
-
sparsify_sparse
(edge_index, edge_weight, num_nodes, method, **kwargs)[source]¶ Sparsifies a given sparse graph further.
- Parameters
edge_index (LongTensor) – The edge indices.
edge_weight (Tensor) – One-dimensional edge weights.
num_nodes (int) – Number of nodes.
method (str) –
Method of sparsification:
"threshold"
: Remove all edges with weights smaller thaneps
. Additionally expects one of these parameters:eps (float) - Threshold to bound edges at.
avg_degree (int) - If
eps
is not given, it can optionally be calculated by calculating theeps
required to achieve a givenavg_degree
.
- Return type
(
LongTensor
,Tensor
)
-
transition_matrix
(edge_index, edge_weight, num_nodes, normalization)[source]¶ Calculate the approximate, sparse diffusion on a given sparse matrix.
- Parameters
edge_index (LongTensor) – The edge indices.
edge_weight (Tensor) – One-dimensional edge weights.
num_nodes (int) – Number of nodes.
normalization (str) –
Normalization scheme:
"sym"
: Symmetric normalization \(\mathbf{T} = \mathbf{D}^{-1/2} \mathbf{A} \mathbf{D}^{-1/2}\)."col"
: Column-wise normalization \(\mathbf{T} = \mathbf{A} \mathbf{D}^{-1}\)."row"
: Row-wise normalization \(\mathbf{T} = \mathbf{D}^{-1} \mathbf{A}\).None
: No normalization.
- Return type
(
LongTensor
,Tensor
)
-
class
GridSampling
(size, start=None, end=None)[source]¶ Clusters points into voxels with size
size
.- Parameters
size (float or [float] or Tensor) – Size of a voxel (in each dimension).
start (float or [float] or Tensor, optional) – Start coordinates of the grid (in each dimension). If set to
None
, will be set to the minimum coordinates found indata.pos
. (default:None
)end (float or [float] or Tensor, optional) – End coordinates of the grid (in each dimension). If set to
None
, will be set to the maximum coordinates found indata.pos
. (default:None
)