import torch
import numba
import numpy as np
from scipy.linalg import expm
from torch_geometric.utils import add_self_loops, is_undirected, to_dense_adj
from torch_sparse import coalesce
from torch_scatter import scatter_add
def jit():
def decorator(func):
try:
return numba.jit(cache=True)(func)
except RuntimeError:
return numba.jit(cache=False)(func)
return decorator
[docs]class GDC(object):
r"""Processes the graph via Graph Diffusion Convolution (GDC) from the
`"Diffusion Improves Graph Learning" <https://www.kdd.in.tum.de/gdc>`_
paper.
.. note::
The paper offers additional advice on how to choose the
hyperparameters.
For an example of using GCN with GDC, see `examples/gcn.py
<https://github.com/rusty1s/pytorch_geometric/blob/master/examples/
gcn.py>`_.
Args:
self_loop_weight (float, optional): Weight of the added self-loop.
Set to :obj:`None` to add no self-loops. (default: :obj:`1`)
normalization_in (str, optional): Normalization of the transition
matrix on the original (input) graph. Possible values:
:obj:`"sym"`, :obj:`"col"`, and :obj:`"row"`.
See :func:`GDC.transition_matrix` for details.
(default: :obj:`"sym"`)
normalization_out (str, optional): Normalization of the transition
matrix on the transformed GDC (output) graph. Possible values:
:obj:`"sym"`, :obj:`"col"`, :obj:`"row"`, and :obj:`None`.
See :func:`GDC.transition_matrix` for details.
(default: :obj:`"col"`)
diffusion_kwargs (dict, optional): Dictionary containing the parameters
for diffusion.
`method` specifies the diffusion method (:obj:`"ppr"`,
:obj:`"heat"` or :obj:`"coeff"`).
Each diffusion method requires different additional parameters.
See :func:`GDC.diffusion_matrix_exact` or
:func:`GDC.diffusion_matrix_approx` for details.
(default: :obj:`dict(method='ppr', alpha=0.15)`)
sparsification_kwargs (dict, optional): Dictionary containing the
parameters for sparsification.
`method` specifies the sparsification method (:obj:`"threshold"` or
:obj:`"topk"`).
Each sparsification method requires different additional
parameters.
See :func:`GDC.sparsify_dense` for details.
(default: :obj:`dict(method='threshold', avg_degree=64)`)
exact (bool, optional): Whether to exactly calculate the diffusion
matrix.
Note that the exact variants are not scalable.
They densify the adjacency matrix and calculate either its inverse
or its matrix exponential.
However, the approximate variants do not support edge weights and
currently only personalized PageRank and sparsification by
threshold are implemented as fast, approximate versions.
(default: :obj:`True`)
:rtype: :class:`torch_geometric.data.Data`
"""
def __init__(self, self_loop_weight=1, normalization_in='sym',
normalization_out='col',
diffusion_kwargs=dict(method='ppr', alpha=0.15),
sparsification_kwargs=dict(method='threshold',
avg_degree=64), exact=True):
self.self_loop_weight = self_loop_weight
self.normalization_in = normalization_in
self.normalization_out = normalization_out
self.diffusion_kwargs = diffusion_kwargs
self.sparsification_kwargs = sparsification_kwargs
self.exact = exact
if self_loop_weight:
assert exact or self_loop_weight == 1
@torch.no_grad()
def __call__(self, data):
N = data.num_nodes
edge_index = data.edge_index
if data.edge_attr is None:
edge_weight = torch.ones(edge_index.size(1),
device=edge_index.device)
else:
edge_weight = data.edge_attr
assert self.exact
assert edge_weight.dim() == 1
if self.self_loop_weight:
edge_index, edge_weight = add_self_loops(
edge_index, edge_weight, fill_value=self.self_loop_weight,
num_nodes=N)
edge_index, edge_weight = coalesce(edge_index, edge_weight, N, N)
if self.exact:
edge_index, edge_weight = self.transition_matrix(
edge_index, edge_weight, N, self.normalization_in)
diff_mat = self.diffusion_matrix_exact(edge_index, edge_weight, N,
**self.diffusion_kwargs)
edge_index, edge_weight = self.sparsify_dense(
diff_mat, **self.sparsification_kwargs)
else:
edge_index, edge_weight = self.diffusion_matrix_approx(
edge_index, edge_weight, N, self.normalization_in,
**self.diffusion_kwargs)
edge_index, edge_weight = self.sparsify_sparse(
edge_index, edge_weight, N, **self.sparsification_kwargs)
edge_index, edge_weight = coalesce(edge_index, edge_weight, N, N)
edge_index, edge_weight = self.transition_matrix(
edge_index, edge_weight, N, self.normalization_out)
data.edge_index = edge_index
data.edge_attr = edge_weight
return data
[docs] def transition_matrix(self, edge_index, edge_weight, num_nodes,
normalization):
r"""Calculate the approximate, sparse diffusion on a given sparse
matrix.
Args:
edge_index (LongTensor): The edge indices.
edge_weight (Tensor): One-dimensional edge weights.
num_nodes (int): Number of nodes.
normalization (str): Normalization scheme:
1. :obj:`"sym"`: Symmetric normalization
:math:`\mathbf{T} = \mathbf{D}^{-1/2} \mathbf{A}
\mathbf{D}^{-1/2}`.
2. :obj:`"col"`: Column-wise normalization
:math:`\mathbf{T} = \mathbf{A} \mathbf{D}^{-1}`.
3. :obj:`"row"`: Row-wise normalization
:math:`\mathbf{T} = \mathbf{D}^{-1} \mathbf{A}`.
4. :obj:`None`: No normalization.
:rtype: (:class:`LongTensor`, :class:`Tensor`)
"""
if normalization == 'sym':
row, col = edge_index
deg = scatter_add(edge_weight, col, dim=0, dim_size=num_nodes)
deg_inv_sqrt = deg.pow(-0.5)
deg_inv_sqrt[deg_inv_sqrt == float('inf')] = 0
edge_weight = deg_inv_sqrt[row] * edge_weight * deg_inv_sqrt[col]
elif normalization == 'col':
_, col = edge_index
deg = scatter_add(edge_weight, col, dim=0, dim_size=num_nodes)
deg_inv = 1. / deg
deg_inv[deg_inv == float('inf')] = 0
edge_weight = edge_weight * deg_inv[col]
elif normalization == 'row':
row, _ = edge_index
deg = scatter_add(edge_weight, row, dim=0, dim_size=num_nodes)
deg_inv = 1. / deg
deg_inv[deg_inv == float('inf')] = 0
edge_weight = edge_weight * deg_inv[row]
elif normalization is None:
pass
else:
raise ValueError(
'Transition matrix normalization {} unknown.'.format(
normalization))
return edge_index, edge_weight
[docs] def diffusion_matrix_exact(self, edge_index, edge_weight, num_nodes,
method, **kwargs):
r"""Calculate the (dense) diffusion on a given sparse graph.
Note that these exact variants are not scalable. They densify the
adjacency matrix and calculate either its inverse or its matrix
exponential.
Args:
edge_index (LongTensor): The edge indices.
edge_weight (Tensor): One-dimensional edge weights.
num_nodes (int): Number of nodes.
method (str): Diffusion method:
1. :obj:`"ppr"`: Use personalized PageRank as diffusion.
Additionally expects the parameter:
- **alpha** (*float*) - Return probability in PPR.
Commonly lies in :obj:`[0.05, 0.2]`.
2. :obj:`"heat"`: Use heat kernel diffusion.
Additionally expects the parameter:
- **t** (*float*) - Time of diffusion. Commonly lies in
:obj:`[2, 10]`.
3. :obj:`"coeff"`: Freely choose diffusion coefficients.
Additionally expects the parameter:
- **coeffs** (*List[float]*) - List of coefficients
:obj:`theta_k` for each power of the transition matrix
(starting at :obj:`0`).
:rtype: (:class:`Tensor`)
"""
if method == 'ppr':
# α (I_n + (α - 1) A)^-1
edge_weight = (kwargs['alpha'] - 1) * edge_weight
edge_index, edge_weight = add_self_loops(edge_index, edge_weight,
fill_value=1,
num_nodes=num_nodes)
mat = to_dense_adj(edge_index, edge_attr=edge_weight).squeeze()
diff_matrix = kwargs['alpha'] * torch.inverse(mat)
elif method == 'heat':
# exp(t (A - I_n))
edge_index, edge_weight = add_self_loops(edge_index, edge_weight,
fill_value=-1,
num_nodes=num_nodes)
edge_weight = kwargs['t'] * edge_weight
mat = to_dense_adj(edge_index, edge_attr=edge_weight).squeeze()
undirected = is_undirected(edge_index, edge_weight, num_nodes)
diff_matrix = self.__expm__(mat, undirected)
elif method == 'coeff':
adj_matrix = to_dense_adj(edge_index,
edge_attr=edge_weight).squeeze()
mat = torch.eye(num_nodes, device=edge_index.device)
diff_matrix = kwargs['coeffs'][0] * mat
for coeff in kwargs['coeffs'][1:]:
mat = mat @ adj_matrix
diff_matrix += coeff * mat
else:
raise ValueError('Exact GDC diffusion {} unknown.'.format(method))
return diff_matrix
[docs] def diffusion_matrix_approx(self, edge_index, edge_weight, num_nodes,
normalization, method, **kwargs):
r"""Calculate the approximate, sparse diffusion on a given sparse
graph.
Args:
edge_index (LongTensor): The edge indices.
edge_weight (Tensor): One-dimensional edge weights.
num_nodes (int): Number of nodes.
normalization (str): Transition matrix normalization scheme
(:obj:`"sym"`, :obj:`"row"`, or :obj:`"col"`).
See :func:`GDC.transition_matrix` for details.
method (str): Diffusion method:
1. :obj:`"ppr"`: Use personalized PageRank as diffusion.
Additionally expects the parameters:
- **alpha** (*float*) - Return probability in PPR.
Commonly lies in :obj:`[0.05, 0.2]`.
- **eps** (*float*) - Threshold for PPR calculation stopping
criterion (:obj:`edge_weight >= eps * out_degree`).
Recommended default: :obj:`1e-4`.
:rtype: (:class:`LongTensor`, :class:`Tensor`)
"""
if method == 'ppr':
if normalization == 'sym':
# Calculate original degrees.
_, col = edge_index
deg = scatter_add(edge_weight, col, dim=0, dim_size=num_nodes)
edge_index_np = edge_index.cpu().numpy()
# Assumes coalesced edge_index.
_, indptr, out_degree = np.unique(edge_index_np[0],
return_index=True,
return_counts=True)
neighbors, neighbor_weights = GDC.__calc_ppr__(
indptr, edge_index_np[1], out_degree, kwargs['alpha'],
kwargs['eps'])
ppr_normalization = 'col' if normalization == 'col' else 'row'
edge_index, edge_weight = self.__neighbors_to_graph__(
neighbors, neighbor_weights, ppr_normalization,
device=edge_index.device)
edge_index = edge_index.to(torch.long)
if normalization == 'sym':
# We can change the normalization from row-normalized to
# symmetric by multiplying the resulting matrix with D^{1/2}
# from the left and D^{-1/2} from the right.
# Since we use the original degrees for this it will be like
# we had used symmetric normalization from the beginning
# (except for errors due to approximation).
row, col = edge_index
deg_inv = deg.sqrt()
deg_inv_sqrt = deg.pow(-0.5)
deg_inv_sqrt[deg_inv_sqrt == float('inf')] = 0
edge_weight = deg_inv[row] * edge_weight * deg_inv_sqrt[col]
elif normalization in ['col', 'row']:
pass
else:
raise ValueError(
('Transition matrix normalization {} not implemented for '
'non-exact GDC computation.').format(normalization))
elif method == 'heat':
raise NotImplementedError(
('Currently no fast heat kernel is implemented. You are '
'welcome to create one yourself, e.g., based on '
'"Kloster and Gleich: Heat kernel based community detection '
'(KDD 2014)."'))
else:
raise ValueError(
'Approximate GDC diffusion {} unknown.'.format(method))
return edge_index, edge_weight
[docs] def sparsify_dense(self, matrix, method, **kwargs):
r"""Sparsifies the given dense matrix.
Args:
matrix (Tensor): Matrix to sparsify.
num_nodes (int): Number of nodes.
method (str): Method of sparsification. Options:
1. :obj:`"threshold"`: Remove all edges with weights smaller
than :obj:`eps`.
Additionally expects one of these parameters:
- **eps** (*float*) - Threshold to bound edges at.
- **avg_degree** (*int*) - If :obj:`eps` is not given,
it can optionally be calculated by calculating the
:obj:`eps` required to achieve a given :obj:`avg_degree`.
2. :obj:`"topk"`: Keep edges with top :obj:`k` edge weights per
node (column).
Additionally expects the following parameters:
- **k** (*int*) - Specifies the number of edges to keep.
- **dim** (*int*) - The axis along which to take the top
:obj:`k`.
:rtype: (:class:`LongTensor`, :class:`Tensor`)
"""
assert matrix.shape[0] == matrix.shape[1]
N = matrix.shape[1]
if method == 'threshold':
if 'eps' not in kwargs.keys():
kwargs['eps'] = self.__calculate_eps__(matrix, N,
kwargs['avg_degree'])
edge_index = torch.nonzero(matrix >= kwargs['eps']).t()
edge_index_flat = edge_index[0] * N + edge_index[1]
edge_weight = matrix.flatten()[edge_index_flat]
elif method == 'topk':
assert kwargs['dim'] in [0, 1]
sort_idx = torch.argsort(matrix, dim=kwargs['dim'],
descending=True)
if kwargs['dim'] == 0:
top_idx = sort_idx[:kwargs['k']]
edge_weight = torch.gather(matrix, dim=kwargs['dim'],
index=top_idx).flatten()
row_idx = torch.arange(0, N, device=matrix.device).repeat(
kwargs['k'])
edge_index = torch.stack([top_idx.flatten(), row_idx], dim=0)
else:
top_idx = sort_idx[:, :kwargs['k']]
edge_weight = torch.gather(matrix, dim=kwargs['dim'],
index=top_idx).flatten()
col_idx = torch.arange(
0, N, device=matrix.device).repeat_interleave(kwargs['k'])
edge_index = torch.stack([col_idx, top_idx.flatten()], dim=0)
else:
raise ValueError('GDC sparsification {} unknown.'.format(method))
return edge_index, edge_weight
[docs] def sparsify_sparse(self, edge_index, edge_weight, num_nodes, method,
**kwargs):
r"""Sparsifies a given sparse graph further.
Args:
edge_index (LongTensor): The edge indices.
edge_weight (Tensor): One-dimensional edge weights.
num_nodes (int): Number of nodes.
method (str): Method of sparsification:
1. :obj:`"threshold"`: Remove all edges with weights smaller
than :obj:`eps`.
Additionally expects one of these parameters:
- **eps** (*float*) - Threshold to bound edges at.
- **avg_degree** (*int*) - If :obj:`eps` is not given,
it can optionally be calculated by calculating the
:obj:`eps` required to achieve a given :obj:`avg_degree`.
:rtype: (:class:`LongTensor`, :class:`Tensor`)
"""
if method == 'threshold':
if 'eps' not in kwargs.keys():
kwargs['eps'] = self.__calculate_eps__(edge_weight, num_nodes,
kwargs['avg_degree'])
remaining_edge_idx = torch.nonzero(
edge_weight >= kwargs['eps']).flatten()
edge_index = edge_index[:, remaining_edge_idx]
edge_weight = edge_weight[remaining_edge_idx]
elif method == 'topk':
raise NotImplementedError(
'Sparse topk sparsification not implemented.')
else:
raise ValueError('GDC sparsification {} unknown.'.format(method))
return edge_index, edge_weight
def __expm__(self, matrix, symmetric):
r"""Calculates matrix exponential.
Args:
matrix (Tensor): Matrix to take exponential of.
symmetric (bool): Specifies whether the matrix is symmetric.
:rtype: (:class:`Tensor`)
"""
if symmetric:
e, V = torch.symeig(matrix, eigenvectors=True)
diff_mat = V @ torch.diag(e.exp()) @ V.t()
else:
diff_mat_np = expm(matrix.cpu().numpy())
diff_mat = torch.Tensor(diff_mat_np).to(matrix.device)
return diff_mat
def __calculate_eps__(self, matrix, num_nodes, avg_degree):
r"""Calculates threshold necessary to achieve a given average degree.
Args:
matrix (Tensor): Adjacency matrix or edge weights.
num_nodes (int): Number of nodes.
avg_degree (int): Target average degree.
:rtype: (:class:`float`)
"""
sorted_edges = torch.sort(matrix.flatten(), descending=True).values
if avg_degree * num_nodes > len(sorted_edges):
return -np.inf
left = sorted_edges[avg_degree * num_nodes - 1]
right = sorted_edges[avg_degree * num_nodes]
return (left + right) / 2.0
def __neighbors_to_graph__(self, neighbors, neighbor_weights,
normalization='row', device='cpu'):
r"""Combine a list of neighbors and neighbor weights to create a sparse
graph.
Args:
neighbors (List[List[int]]): List of neighbors for each node.
neighbor_weights (List[List[float]]): List of weights for the
neighbors of each node.
normalization (str): Normalization of resulting matrix
(options: :obj:`"row"`, :obj:`"col"`). (default: :obj:`"row"`)
device (torch.device): Device to create output tensors on.
(default: :obj:`"cpu"`)
:rtype: (:class:`LongTensor`, :class:`Tensor`)
"""
edge_weight = torch.Tensor(np.concatenate(neighbor_weights)).to(device)
i = np.repeat(np.arange(len(neighbors)),
np.fromiter(map(len, neighbors), dtype=np.int))
j = np.concatenate(neighbors)
if normalization == 'col':
edge_index = torch.Tensor(np.vstack([j, i])).to(device)
N = len(neighbors)
edge_index, edge_weight = coalesce(edge_index, edge_weight, N, N)
elif normalization == 'row':
edge_index = torch.Tensor(np.vstack([i, j])).to(device)
else:
raise ValueError(
f"PPR matrix normalization {normalization} unknown.")
return edge_index, edge_weight
@staticmethod
@jit()
def __calc_ppr__(indptr, indices, out_degree, alpha, eps):
r"""Calculate the personalized PageRank vector for all nodes
using a variant of the Andersen algorithm
(see Andersen et al. :Local Graph Partitioning using PageRank Vectors.)
Args:
indptr (np.ndarray): Index pointer for the sparse matrix
(CSR-format).
indices (np.ndarray): Indices of the sparse matrix entries
(CSR-format).
out_degree (np.ndarray): Out-degree of each node.
alpha (float): Alpha of the PageRank to calculate.
eps (float): Threshold for PPR calculation stopping criterion
(:obj:`edge_weight >= eps * out_degree`).
:rtype: (:class:`List[List[int]]`, :class:`List[List[float]]`)
"""
alpha_eps = alpha * eps
js = []
vals = []
for inode in range(len(out_degree)):
p = {inode: 0.0}
r = {}
r[inode] = alpha
q = [inode]
while len(q) > 0:
unode = q.pop()
res = r[unode] if unode in r else 0
if unode in p:
p[unode] += res
else:
p[unode] = res
r[unode] = 0
for vnode in indices[indptr[unode]:indptr[unode + 1]]:
_val = (1 - alpha) * res / out_degree[unode]
if vnode in r:
r[vnode] += _val
else:
r[vnode] = _val
res_vnode = r[vnode] if vnode in r else 0
if res_vnode >= alpha_eps * out_degree[vnode]:
if vnode not in q:
q.append(vnode)
js.append(list(p.keys()))
vals.append(list(p.values()))
return js, vals
def __repr__(self):
return '{}()'.format(self.__class__.__name__)