import torch
[docs]class Distance(object):
r"""Saves the Euclidean distance of linked nodes in its edge attributes.
Args:
norm (bool, optional): If set to :obj:`False`, the output will not be
normalized to the interval :math:`[0, 1]`. (default: :obj:`True`)
max_value (float, optional): If set and :obj:`norm=True`, normalization
will be performed based on this value instead of the maximum value
found in the data. (default: :obj:`None`)
cat (bool, optional): If set to :obj:`False`, all existing edge
attributes will be replaced. (default: :obj:`True`)
"""
def __init__(self, norm=True, max_value=None, cat=True):
self.norm = norm
self.max = max_value
self.cat = cat
def __call__(self, data):
(row, col), pos, pseudo = data.edge_index, data.pos, data.edge_attr
dist = torch.norm(pos[col] - pos[row], p=2, dim=-1).view(-1, 1)
if self.norm and dist.numel() > 0:
dist = dist / (dist.max() if self.max is None else self.max)
if pseudo is not None and self.cat:
pseudo = pseudo.view(-1, 1) if pseudo.dim() == 1 else pseudo
data.edge_attr = torch.cat([pseudo, dist.type_as(pseudo)], dim=-1)
else:
data.edge_attr = dist
return data
def __repr__(self):
return '{}(norm={}, max_value={})'.format(self.__class__.__name__,
self.norm, self.max)