Source code for torch_geometric.utils.train_test_split_edges

import math
import random
import torch
from torch_geometric.utils import to_undirected


[docs]def train_test_split_edges(data, val_ratio=0.05, test_ratio=0.1): r"""Splits the edges of a :obj:`torch_geometric.data.Data` object into positive and negative train/val/test edges, and adds attributes of `train_pos_edge_index`, `train_neg_adj_mask`, `val_pos_edge_index`, `val_neg_edge_index`, `test_pos_edge_index`, and `test_neg_edge_index` to :attr:`data`. Args: data (Data): The data object. val_ratio (float, optional): The ratio of positive validation edges. (default: :obj:`0.05`) test_ratio (float, optional): The ratio of positive test edges. (default: :obj:`0.1`) :rtype: :class:`torch_geometric.data.Data` """ assert 'batch' not in data # No batch-mode. row, col = data.edge_index data.edge_index = None # Return upper triangular portion. mask = row < col row, col = row[mask], col[mask] n_v = int(math.floor(val_ratio * row.size(0))) n_t = int(math.floor(test_ratio * row.size(0))) # Positive edges. perm = torch.randperm(row.size(0)) row, col = row[perm], col[perm] r, c = row[:n_v], col[:n_v] data.val_pos_edge_index = torch.stack([r, c], dim=0) r, c = row[n_v:n_v + n_t], col[n_v:n_v + n_t] data.test_pos_edge_index = torch.stack([r, c], dim=0) r, c = row[n_v + n_t:], col[n_v + n_t:] data.train_pos_edge_index = torch.stack([r, c], dim=0) data.train_pos_edge_index = to_undirected(data.train_pos_edge_index) # Negative edges. num_nodes = data.num_nodes neg_adj_mask = torch.ones(num_nodes, num_nodes, dtype=torch.uint8) neg_adj_mask = neg_adj_mask.triu(diagonal=1).to(torch.bool) neg_adj_mask[row, col] = 0 neg_row, neg_col = neg_adj_mask.nonzero().t() perm = random.sample(range(neg_row.size(0)), min(n_v + n_t, neg_row.size(0))) perm = torch.tensor(perm) perm = perm.to(torch.long) neg_row, neg_col = neg_row[perm], neg_col[perm] neg_adj_mask[neg_row, neg_col] = 0 data.train_neg_adj_mask = neg_adj_mask row, col = neg_row[:n_v], neg_col[:n_v] data.val_neg_edge_index = torch.stack([row, col], dim=0) row, col = neg_row[n_v:n_v + n_t], neg_col[n_v:n_v + n_t] data.test_neg_edge_index = torch.stack([row, col], dim=0) return data