Source code for torch_geometric.utils.random

import torch
import numpy as np
from torch_geometric.utils import to_undirected, remove_self_loops


[docs]def erdos_renyi_graph(num_nodes, edge_prob, directed=False): r"""Returns the :obj:`edge_index` of a random Erdos-Renyi graph. Args: num_nodes (int): The number of nodes. edge_prob (float): Probability of an edge. directed (bool, optional): If set to :obj:`True`, will return a directed graph. (default: :obj:`False`) """ if directed: idx = torch.arange((num_nodes - 1) * num_nodes) idx = idx.view(num_nodes - 1, num_nodes) idx = idx + torch.arange(1, num_nodes).view(-1, 1) idx = idx.view(-1) else: idx = torch.combinations(torch.arange(num_nodes)) # Filter edges. mask = torch.rand(idx.size(0)) < edge_prob idx = idx[mask] if directed: row, col = idx / num_nodes, idx % num_nodes edge_index = torch.stack([row, col], dim=0) else: edge_index = to_undirected(idx.t(), num_nodes) return edge_index
[docs]def stochastic_blockmodel_graph(block_sizes, edge_probs, directed=False): r"""Returns the :obj:`edge_index` of a stochastic blockmodel graph. Args: block_sizes ([int] or LongTensor): The sizes of blocks. edge_probs ([[float]] or FloatTensor): The density of edges going from each block to each other block. Must be symmetric if the graph is undirected. directed (bool, optional): If set to :obj:`True`, will return a directed graph. (default: :obj:`False`) """ size, prob = block_sizes, edge_probs if not torch.is_tensor(size): size = torch.tensor(size, dtype=torch.long) if not torch.is_tensor(prob): prob = torch.tensor(prob, dtype=torch.float) assert size.dim() == 1 assert prob.dim() == 2 and prob.size(0) == prob.size(1) assert size.size(0) == prob.size(0) if not directed: assert torch.allclose(prob, prob.t()) node_idx = torch.cat([size.new_full((b, ), i) for i, b in enumerate(size)]) num_nodes = node_idx.size(0) if directed: idx = torch.arange((num_nodes - 1) * num_nodes) idx = idx.view(num_nodes - 1, num_nodes) idx = idx + torch.arange(1, num_nodes).view(-1, 1) idx = idx.view(-1) row, col = idx / num_nodes, idx % num_nodes else: row, col = torch.combinations(torch.arange(num_nodes)).t() mask = torch.bernoulli(prob[node_idx[row], node_idx[col]]).to(torch.bool) edge_index = torch.stack([row[mask], col[mask]], dim=0) if not directed: edge_index = to_undirected(edge_index, num_nodes) return edge_index
[docs]def barabasi_albert_graph(num_nodes, num_edges): r"""Returns the :obj:`edge_index` of a Barabasi-Albert preferential attachment model, where a graph of :obj:`num_nodes` nodes grows by attaching new nodes with :obj:`num_edges` edges that are preferentially attached to existing nodes with high degree. Args: num_nodes (int): The number of nodes. num_edges (int): The number of edges from a new node to existing nodes. """ assert num_edges > 0 and num_edges < num_nodes row, col = torch.arange(num_edges), torch.randperm(num_edges) for i in range(num_edges, num_nodes): row = torch.cat([row, torch.full((num_edges, ), i, dtype=torch.long)]) choice = np.random.choice(torch.cat([row, col]).numpy(), num_edges) col = torch.cat([col, torch.from_numpy(choice)]) edge_index = torch.stack([row, col], dim=0) edge_index, _ = remove_self_loops(edge_index) edge_index = to_undirected(edge_index, num_nodes) return edge_index