import torch
import numpy as np
try:
import gdist
except ImportError:
gdist = None
[docs]def geodesic_distance(pos, face, src=None, dest=None, norm=True,
max_distance=None):
r"""Computes (normalized) geodesic distances of a mesh given by :obj:`pos`
and :obj:`face`. If :obj:`src` and :obj:`dest` are given, this method only
computes the geodesic distances for the respective source and target
node-pairs.
.. note::
This function requires the :obj:`gdist` package.
To install, run :obj:`pip install cython && pip install gdist`.
Args:
pos (Tensor): The node positions.
face (LongTensor): The face indices.
src (LongTensor, optional): If given, only compute geodesic distances
for the specified source indices. (default: :obj:`None`)
dest (LongTensor, optional): If given, only compute geodesic distances
for the specified target indices. (default: :obj:`None`)
norm (bool, optional): Normalizes geodesic distances by
:math:`\sqrt{\textrm{area}(\mathcal{M})}`. (default: :obj:`True`)
max_distance (float, optional): If given, only yields results for
geodesic distances less than :obj:`max_distance`. This will speed
up runtime dramatically. (default: :obj:`None`)
:rtype: Tensor
"""
if gdist is None:
raise ImportError('Package `gdist` could not be found.')
max_distance = float('inf') if max_distance is None else max_distance
if norm:
area = (pos[face[1]] - pos[face[0]]).cross(pos[face[2]] - pos[face[0]])
norm = (area.norm(p=2, dim=1) / 2).sum().sqrt().item()
else:
norm = 1.0
dtype = pos.dtype
pos = pos.detach().cpu().to(torch.double).numpy()
face = face.detach().t().cpu().to(torch.int).numpy()
if src is None and dest is None:
out = gdist.local_gdist_matrix(pos, face,
max_distance * norm).toarray() / norm
return torch.from_numpy(out).to(dtype)
if src is None:
src = np.arange(pos.shape[0], dtype=np.int32)
else:
src = src.detach().cpu().to(torch.int).numpy()
dest = None if dest is None else dest.detach().cpu().to(torch.int).numpy()
outs = []
for i in range(len(src)):
s = src[i:i + 1]
d = None if dest is None else dest[i:i + 1]
out = gdist.compute_gdist(pos, face, s, d, max_distance * norm) / norm
out = torch.from_numpy(out).to(dtype)
outs.append(out)
out = torch.cat(outs, dim=0)
if dest is None:
out = out.view(-1, pos.shape[0])
return out