Source code for torch_geometric.nn.pool.avg_pool

from torch_geometric.data import Batch
from torch_geometric.utils import scatter_

from .consecutive import consecutive_cluster
from .pool import pool_edge, pool_batch, pool_pos


def _avg_pool_x(cluster, x, size=None):
    return scatter_('mean', x, cluster, dim=0, dim_size=size)


[docs]def avg_pool_x(cluster, x, batch, size=None): r"""Average pools node features according to the clustering defined in :attr:`cluster`. See :meth:`torch_geometric.nn.pool.max_pool_x` for more details. Args: cluster (LongTensor): Cluster vector :math:`\mathbf{c} \in \{ 0, \ldots, N - 1 \}^N`, which assigns each node to a specific cluster. x (Tensor): Node feature matrix :math:`\mathbf{X} \in \mathbb{R}^{(N_1 + \ldots + N_B) \times F}`. batch (LongTensor): Batch vector :math:`\mathbf{b} \in {\{ 0, \ldots, B-1\}}^N`, which assigns each node to a specific example. size (int, optional): The maximum number of clusters in a single example. (default: :obj:`None`) :rtype: (:class:`Tensor`, :class:`LongTensor`) if :attr:`size` is :obj:`None`, else :class:`Tensor` """ if size is not None: return _avg_pool_x(cluster, x, (batch.max().item() + 1) * size) cluster, perm = consecutive_cluster(cluster) x = _avg_pool_x(cluster, x) batch = pool_batch(perm, batch) return x, batch
[docs]def avg_pool(cluster, data, transform=None): r"""Pools and coarsens a graph given by the :class:`torch_geometric.data.Data` object according to the clustering defined in :attr:`cluster`. Final node features are defined by the *average* features of all nodes within the same cluster. See :meth:`torch_geometric.nn.pool.max_pool` for more details. Args: cluster (LongTensor): Cluster vector :math:`\mathbf{c} \in \{ 0, \ldots, N - 1 \}^N`, which assigns each node to a specific cluster. data (Data): Graph data object. transform (callable, optional): A function/transform that takes in the coarsened and pooled :obj:`torch_geometric.data.Data` object and returns a transformed version. (default: :obj:`None`) :rtype: :class:`torch_geometric.data.Data` """ cluster, perm = consecutive_cluster(cluster) x = _avg_pool_x(cluster, data.x) index, attr = pool_edge(cluster, data.edge_index, data.edge_attr) batch = None if data.batch is None else pool_batch(perm, data.batch) pos = None if data.pos is None else pool_pos(cluster, data.pos) data = Batch(batch=batch, x=x, edge_index=index, edge_attr=attr, pos=pos) if transform is not None: data = transform(data) return data