Source code for torch_geometric.nn.models.jumping_knowledge

import torch
from torch.nn import Linear, LSTM


[docs]class JumpingKnowledge(torch.nn.Module): r"""The Jumping Knowledge layer aggregation module from the `"Representation Learning on Graphs with Jumping Knowledge Networks" <https://arxiv.org/abs/1806.03536>`_ paper based on either **concatenation** (:obj:`"cat"`) .. math:: \mathbf{x}_v^{(1)} \, \Vert \, \ldots \, \Vert \, \mathbf{x}_v^{(T)} **max pooling** (:obj:`"max"`) .. math:: \max \left( \mathbf{x}_v^{(1)}, \ldots, \mathbf{x}_v^{(T)} \right) or **weighted summation** .. math:: \sum_{t=1}^T \alpha_v^{(t)} \mathbf{x}_v^{(t)} with attention scores :math:`\alpha_v^{(t)}` obtained from a bi-directional LSTM (:obj:`"lstm"`). Args: mode (string): The aggregation scheme to use (:obj:`"cat"`, :obj:`"max"` or :obj:`"lstm"`). channels (int, optional): The number of channels per representation. Needs to be only set for LSTM-style aggregation. (default: :obj:`None`) num_layers (int, optional): The number of layers to aggregate. Needs to be only set for LSTM-style aggregation. (default: :obj:`None`) """ def __init__(self, mode, channels=None, num_layers=None): super(JumpingKnowledge, self).__init__() self.mode = mode.lower() assert self.mode in ['cat', 'max', 'lstm'] if mode == 'lstm': assert channels is not None, 'channels cannot be None for lstm' assert num_layers is not None, 'num_layers cannot be None for lstm' self.lstm = LSTM( channels, (num_layers * channels) // 2, bidirectional=True, batch_first=True) self.att = Linear(2 * ((num_layers * channels) // 2), 1) self.reset_parameters()
[docs] def reset_parameters(self): if hasattr(self, 'lstm'): self.lstm.reset_parameters() if hasattr(self, 'att'): self.att.reset_parameters()
[docs] def forward(self, xs): r"""Aggregates representations across different layers. Args: xs (list or tuple): List containing layer-wise representations. """ assert isinstance(xs, list) or isinstance(xs, tuple) if self.mode == 'cat': return torch.cat(xs, dim=-1) elif self.mode == 'max': return torch.stack(xs, dim=-1).max(dim=-1)[0] elif self.mode == 'lstm': x = torch.stack(xs, dim=1) # [num_nodes, num_layers, num_channels] alpha, _ = self.lstm(x) alpha = self.att(alpha).squeeze(-1) # [num_nodes, num_layers] alpha = torch.softmax(alpha, dim=-1) return (x * alpha.unsqueeze(-1)).sum(dim=1)
def __repr__(self): return '{}({})'.format(self.__class__.__name__, self.mode)