Source code for torch_geometric.nn.glob.sort

import torch
from torch_geometric.utils import to_dense_batch


[docs]def global_sort_pool(x, batch, k): r"""The global pooling operator from the `"An End-to-End Deep Learning Architecture for Graph Classification" <https://www.cse.wustl.edu/~muhan/papers/AAAI_2018_DGCNN.pdf>`_ paper, where node features are first sorted individually and then sorted in descending order based on their last features. The first :math:`k` nodes form the output of the layer. Args: x (Tensor): Node feature matrix :math:`\mathbf{X} \in \mathbb{R}^{N \times F}`. batch (LongTensor): Batch vector :math:`\mathbf{b} \in {\{ 0, \ldots, B-1\}}^N`, which assigns each node to a specific example. k (int): The number of nodes to hold for each graph. :rtype: :class:`Tensor` """ x, _ = x.sort(dim=-1) fill_value = x.min().item() - 1 batch_x, _ = to_dense_batch(x, batch, fill_value) B, N, D = batch_x.size() _, perm = batch_x[:, :, -1].sort(dim=-1, descending=True) arange = torch.arange(B, dtype=torch.long, device=perm.device) * N perm = perm + arange.view(-1, 1) batch_x = batch_x.view(B * N, D) batch_x = batch_x[perm] batch_x = batch_x.view(B, N, D) if N >= k: batch_x = batch_x[:, :k].contiguous() else: expand_batch_x = batch_x.new_full((B, k - N, D), fill_value) batch_x = torch.cat([batch_x, expand_batch_x], dim=1) batch_x[batch_x == fill_value] = 0 x = batch_x.view(B, k * D) return x