import torch
from torch_geometric.nn.conv import MessagePassing
from ..inits import reset
try:
    from torch_cluster import knn_graph
except ImportError:
    knn_graph = None
[docs]class EdgeConv(MessagePassing):
    r"""The edge convolutional operator from the `"Dynamic Graph CNN for
    Learning on Point Clouds" <https://arxiv.org/abs/1801.07829>`_ paper
    .. math::
        \mathbf{x}^{\prime}_i = \sum_{j \in \mathcal{N}(i)}
        h_{\mathbf{\Theta}}(\mathbf{x}_i \, \Vert \,
        \mathbf{x}_j - \mathbf{x}_i),
    where :math:`h_{\mathbf{\Theta}}` denotes a neural network, *.i.e.* a MLP.
    Args:
        nn (torch.nn.Module): A neural network :math:`h_{\mathbf{\Theta}}` that
            maps pair-wise concatenated node features :obj:`x` of shape
            :obj:`[-1, 2 * in_channels]` to shape :obj:`[-1, out_channels]`,
            *e.g.*, defined by :class:`torch.nn.Sequential`.
        aggr (string, optional): The aggregation scheme to use
            (:obj:`"add"`, :obj:`"mean"`, :obj:`"max"`).
            (default: :obj:`"max"`)
        **kwargs (optional): Additional arguments of
            :class:`torch_geometric.nn.conv.MessagePassing`.
    """
    def __init__(self, nn, aggr='max', **kwargs):
        super(EdgeConv, self).__init__(aggr=aggr, **kwargs)
        self.nn = nn
        self.reset_parameters()
[docs]    def reset_parameters(self):
        reset(self.nn) 
[docs]    def forward(self, x, edge_index):
        """"""
        x = x.unsqueeze(-1) if x.dim() == 1 else x
        return self.propagate(edge_index, x=x) 
    def message(self, x_i, x_j):
        return self.nn(torch.cat([x_i, x_j - x_i], dim=1))
    def __repr__(self):
        return '{}(nn={})'.format(self.__class__.__name__, self.nn) 
[docs]class DynamicEdgeConv(EdgeConv):
    r"""The dynamic edge convolutional operator from the `"Dynamic Graph CNN
    for Learning on Point Clouds" <https://arxiv.org/abs/1801.07829>`_ paper
    (see :class:`torch_geometric.nn.conv.EdgeConv`), where the graph is
    dynamically constructed using nearest neighbors in the feature space.
    Args:
        nn (torch.nn.Module): A neural network :math:`h_{\mathbf{\Theta}}` that
            maps pair-wise concatenated node features :obj:`x` of shape
            `:obj:`[-1, 2 * in_channels]` to shape :obj:`[-1, out_channels]`,
            *e.g.* defined by :class:`torch.nn.Sequential`.
        k (int): Number of nearest neighbors.
        aggr (string): The aggregation operator to use (:obj:`"add"`,
            :obj:`"mean"`, :obj:`"max"`). (default: :obj:`"max"`)
        **kwargs (optional): Additional arguments of
            :class:`torch_geometric.nn.conv.MessagePassing`.
    """
    def __init__(self, nn, k, aggr='max', **kwargs):
        super(DynamicEdgeConv, self).__init__(nn=nn, aggr=aggr, **kwargs)
        if knn_graph is None:
            raise ImportError('`DynamicEdgeConv` requires `torch-cluster`.')
        self.k = k
[docs]    def forward(self, x, batch=None):
        """"""
        edge_index = knn_graph(x, self.k, batch, loop=False, flow=self.flow)
        return super(DynamicEdgeConv, self).forward(x, edge_index) 
    def __repr__(self):
        return '{}(nn={}, k={})'.format(self.__class__.__name__, self.nn,
                                        self.k)