Source code for torch_geometric.datasets.suite_sparse

import os.path as osp

import torch
from scipy.io import loadmat
from torch_geometric.data import Data, InMemoryDataset, download_url


[docs]class SuiteSparseMatrixCollection(InMemoryDataset): r"""A suite of sparse matrix benchmarks known as the `Suite Sparse Matrix Collection <https://sparse.tamu.edu>`_ collected from a wide range of applications. Args: root (string): Root directory where the dataset should be saved. group (string): The group of the sparse matrix. name (string): The name of the sparse matrix. transform (callable, optional): A function/transform that takes in an :obj:`torch_geometric.data.Data` object and returns a transformed version. The data object will be transformed before every access. (default: :obj:`None`) pre_transform (callable, optional): A function/transform that takes in an :obj:`torch_geometric.data.Data` object and returns a transformed version. The data object will be transformed before being saved to disk. (default: :obj:`None`) """ url = 'https://sparse.tamu.edu/mat/{}/{}.mat' def __init__(self, root, group, name, transform=None, pre_transform=None): self.group = group self.name = name super(SuiteSparseMatrixCollection, self).__init__(root, transform, pre_transform) self.data, self.slices = torch.load(self.processed_paths[0]) @property def raw_dir(self): return osp.join(self.root, self.group, self.name, 'raw') @property def processed_dir(self): return osp.join(self.root, self.group, self.name, 'processed') @property def raw_file_names(self): return f'{self.name}.mat' @property def processed_file_names(self): return 'data.pt' def download(self): url = self.url.format(self.group, self.name) download_url(url, self.raw_dir) def process(self): mat = loadmat(self.raw_paths[0])['Problem'][0][0][2].tocsr().tocoo() row = torch.from_numpy(mat.row).to(torch.long) col = torch.from_numpy(mat.col).to(torch.long) edge_index = torch.stack([row, col], dim=0) edge_attr = torch.from_numpy(mat.data).to(torch.float) if torch.all(edge_attr == 1.): edge_attr = None size = torch.Size(mat.shape) if mat.shape[0] == mat.shape[1]: size = None num_nodes = mat.shape[0] data = Data(edge_index=edge_index, edge_attr=edge_attr, size=size, num_nodes=num_nodes) if self.pre_transform is not None: data = self.pre_transform(data) torch.save(self.collate([data]), self.processed_paths[0]) def __repr__(self): return '{}(group={}, name={})'.format(self.__class__.__name__, self.group, self.name)