Source code for torch_geometric.datasets.reddit

import os
import os.path as osp

import torch
import numpy as np
import scipy.sparse as sp
from torch_sparse import coalesce
from torch_geometric.data import (InMemoryDataset, Data, download_url,
                                  extract_zip)


[docs]class Reddit(InMemoryDataset): r"""The Reddit dataset from the `"Inductive Representation Learning on Large Graphs" <https://arxiv.org/abs/1706.02216>`_ paper, containing Reddit posts belonging to different communities. Args: root (string): Root directory where the dataset should be saved. transform (callable, optional): A function/transform that takes in an :obj:`torch_geometric.data.Data` object and returns a transformed version. The data object will be transformed before every access. (default: :obj:`None`) pre_transform (callable, optional): A function/transform that takes in an :obj:`torch_geometric.data.Data` object and returns a transformed version. The data object will be transformed before being saved to disk. (default: :obj:`None`) pre_filter (callable, optional): A function that takes in an :obj:`torch_geometric.data.Data` object and returns a boolean value, indicating whether the data object should be included in the final dataset. (default: :obj:`None`) """ url = 'https://s3.us-east-2.amazonaws.com/dgl.ai/dataset/reddit.zip' def __init__(self, root, transform=None, pre_transform=None, pre_filter=None): super(Reddit, self).__init__(root, transform, pre_transform, pre_filter) self.data, self.slices = torch.load(self.processed_paths[0]) @property def raw_file_names(self): return ['reddit_data.npz', 'reddit_graph.npz'] @property def processed_file_names(self): return 'data.pt' def download(self): path = download_url(self.url, self.raw_dir) extract_zip(path, self.raw_dir) os.unlink(path) def process(self): data = np.load(osp.join(self.raw_dir, 'reddit_data.npz')) x = torch.from_numpy(data['feature']).to(torch.float) y = torch.from_numpy(data['label']).to(torch.long) split = torch.from_numpy(data['node_types']) adj = sp.load_npz(osp.join(self.raw_dir, 'reddit_graph.npz')) row = torch.from_numpy(adj.row).to(torch.long) col = torch.from_numpy(adj.col).to(torch.long) edge_index = torch.stack([row, col], dim=0) edge_index, _ = coalesce(edge_index, None, x.size(0), x.size(0)) data = Data(x=x, edge_index=edge_index, y=y) data.train_mask = split == 1 data.val_mask = split == 2 data.test_mask = split == 3 torch.save(self.collate([data]), self.processed_paths[0]) def __repr__(self): return '{}()'.format(self.__class__.__name__)