Source code for torch_geometric.datasets.faust

import os.path as osp
import shutil

import torch
from torch_geometric.data import InMemoryDataset, extract_zip
from torch_geometric.io import read_ply


[docs]class FAUST(InMemoryDataset): r"""The FAUST humans dataset from the `"FAUST: Dataset and Evaluation for 3D Mesh Registration" <http://files.is.tue.mpg.de/black/papers/FAUST2014.pdf>`_ paper, containing 100 watertight meshes representing 10 different poses for 10 different subjects. .. note:: Data objects hold mesh faces instead of edge indices. To convert the mesh to a graph, use the :obj:`torch_geometric.transforms.FaceToEdge` as :obj:`pre_transform`. To convert the mesh to a point cloud, use the :obj:`torch_geometric.transforms.SamplePoints` as :obj:`transform` to sample a fixed number of points on the mesh faces according to their face area. Args: root (string): Root directory where the dataset should be saved. train (bool, optional): If :obj:`True`, loads the training dataset, otherwise the test dataset. (default: :obj:`True`) transform (callable, optional): A function/transform that takes in an :obj:`torch_geometric.data.Data` object and returns a transformed version. The data object will be transformed before every access. (default: :obj:`None`) pre_transform (callable, optional): A function/transform that takes in an :obj:`torch_geometric.data.Data` object and returns a transformed version. The data object will be transformed before being saved to disk. (default: :obj:`None`) pre_filter (callable, optional): A function that takes in an :obj:`torch_geometric.data.Data` object and returns a boolean value, indicating whether the data object should be included in the final dataset. (default: :obj:`None`) """ url = 'http://faust.is.tue.mpg.de/' def __init__(self, root, train=True, transform=None, pre_transform=None, pre_filter=None): super(FAUST, self).__init__(root, transform, pre_transform, pre_filter) path = self.processed_paths[0] if train else self.processed_paths[1] self.data, self.slices = torch.load(path) @property def raw_file_names(self): return 'MPI-FAUST.zip' @property def processed_file_names(self): return ['training.pt', 'test.pt'] def download(self): raise RuntimeError( 'Dataset not found. Please download {} from {} and move it to {}'. format(self.raw_file_names, self.url, self.raw_dir)) def process(self): extract_zip(self.raw_paths[0], self.raw_dir, log=False) path = osp.join(self.raw_dir, 'MPI-FAUST', 'training', 'registrations') path = osp.join(path, 'tr_reg_{0:03d}.ply') data_list = [] for i in range(100): data = read_ply(path.format(i)) data.y = torch.tensor([i % 10], dtype=torch.long) if self.pre_filter is not None and not self.pre_filter(data): continue if self.pre_transform is not None: data = self.pre_transform(data) data_list.append(data) torch.save(self.collate(data_list[:80]), self.processed_paths[0]) torch.save(self.collate(data_list[80:]), self.processed_paths[1]) shutil.rmtree(osp.join(self.raw_dir, 'MPI-FAUST'))