Source code for torch_geometric.datasets.coauthor

import torch
from torch_geometric.data import InMemoryDataset, download_url
from torch_geometric.io import read_npz


[docs]class Coauthor(InMemoryDataset): r"""The Coauthor CS and Coauthor Physics networks from the `"Pitfalls of Graph Neural Network Evaluation" <https://arxiv.org/abs/1811.05868>`_ paper. Nodes represent authors that are connected by an edge if they co-authored a paper. Given paper keywords for each author's papers, the task is to map authors to their respective field of study. Args: root (string): Root directory where the dataset should be saved. name (string): The name of the dataset (:obj:`"CS"`, :obj:`"Physics"`). transform (callable, optional): A function/transform that takes in an :obj:`torch_geometric.data.Data` object and returns a transformed version. The data object will be transformed before every access. (default: :obj:`None`) pre_transform (callable, optional): A function/transform that takes in an :obj:`torch_geometric.data.Data` object and returns a transformed version. The data object will be transformed before being saved to disk. (default: :obj:`None`) """ url = 'https://github.com/shchur/gnn-benchmark/raw/master/data/npz/' def __init__(self, root, name, transform=None, pre_transform=None): assert name.lower() in ['cs', 'physics'] self.name = 'CS' if name.lower() == 'cs' else 'Physics' super(Coauthor, self).__init__(root, transform, pre_transform) self.data, self.slices = torch.load(self.processed_paths[0]) @property def raw_file_names(self): return 'ms_academic_{}.npz'.format(self.name[:3].lower()) @property def processed_file_names(self): return 'data.pt' def download(self): download_url(self.url + self.raw_file_names, self.raw_dir) def process(self): data = read_npz(self.raw_paths[0]) data = data if self.pre_transform is None else self.pre_transform(data) data, slices = self.collate([data]) torch.save((data, slices), self.processed_paths[0]) def __repr__(self): return '{}{}()'.format(self.__class__.__name__, self.name)