Source code for torch_geometric.datasets.citation_full

import os.path as osp

import torch
from torch_geometric.data import InMemoryDataset, download_url
from torch_geometric.io import read_npz


[docs]class CitationFull(InMemoryDataset): r"""The full citation network datasets from the `"Deep Gaussian Embedding of Graphs: Unsupervised Inductive Learning via Ranking" <https://arxiv.org/abs/1707.03815>`_ paper. Nodes represent documents and edges represent citation links. Datasets include `citeseer`, `cora`, `cora_ml`, `dblp`, `pubmed`. Args: root (string): Root directory where the dataset should be saved. name (string): The name of the dataset (:obj:`"Cora"`, :obj:`"Cora_ML"` :obj:`"CiteSeer"`, :obj:`"DBLP"`, :obj:`"PubMed"`). transform (callable, optional): A function/transform that takes in an :obj:`torch_geometric.data.Data` object and returns a transformed version. The data object will be transformed before every access. (default: :obj:`None`) pre_transform (callable, optional): A function/transform that takes in an :obj:`torch_geometric.data.Data` object and returns a transformed version. The data object will be transformed before being saved to disk. (default: :obj:`None`) """ url = 'https://github.com/abojchevski/graph2gauss/raw/master/data/{}.npz' def __init__(self, root, name, transform=None, pre_transform=None): self.name = name.lower() assert name in ['cora', 'cora_ml', 'citeseer', 'dblp', 'pubmed'] super(CitationFull, self).__init__(root, transform, pre_transform) self.data, self.slices = torch.load(self.processed_paths[0]) @property def raw_dir(self): return osp.join(self.root, self.name, 'raw') @property def processed_dir(self): return osp.join(self.root, self.name, 'processed') @property def raw_file_names(self): return '{}.npz'.format(self.name) @property def processed_file_names(self): return 'data.pt' def download(self): download_url(self.url.format(self.name), self.raw_dir) def process(self): data = read_npz(self.raw_paths[0]) data = data if self.pre_transform is None else self.pre_transform(data) data, slices = self.collate([data]) torch.save((data, slices), self.processed_paths[0]) def __repr__(self): return '{}Full()'.format(self.name.capitalize())
[docs]class CoraFull(CitationFull): r"""Alias for :class:`torch_geometric.dataset.CitationFull` with :obj:`name="cora"`.""" def __init__(self, root, transform=None, pre_transform=None): super(CoraFull, self).__init__(root, 'cora', transform, pre_transform) def download(self): super(CoraFull, self).download() def process(self): super(CoraFull, self).process()